If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+1060x-46900=0
a = 6; b = 1060; c = -46900;
Δ = b2-4ac
Δ = 10602-4·6·(-46900)
Δ = 2249200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2249200}=\sqrt{400*5623}=\sqrt{400}*\sqrt{5623}=20\sqrt{5623}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1060)-20\sqrt{5623}}{2*6}=\frac{-1060-20\sqrt{5623}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1060)+20\sqrt{5623}}{2*6}=\frac{-1060+20\sqrt{5623}}{12} $
| -7(1-6w)=-343 | | 4(2t+1)=2(7t+7) | | 3x+14=-4x-19 | | 2x-6=x+7=25 | | 2a+(45+5a)=94 | | 8*(3*w+5)/3=3 | | 4x-6=-242x-2 | | -3*(2*t+1)=-27 | | 3x+14=3x-19 | | 5x×-1=3x+9 | | 1/5x+4=6 | | 6(3+4x)-7=179 | | (x+3)^2=2x+9 | | d/5+-8=2 | | 5(x+12)2=35 | | 4*(f-6)=-48 | | x^2+3*x+4.81=0 | | 2x^2+4x-24=5x+12 | | (x+50)+(2x-30)=180 | | -10*(s+1)=67 | | 8(-8x-5)=-488 | | 3=4u-u | | -(c-8)=-6 | | 4(z-3)-5-3z)=3(2z-4) | | 36=3x+x | | 50+x+15+95=180 | | 3*(t+2)=-6 | | 7+9x=-49+x | | 7x-3x2+9=x=4 | | 24g+2-3g=15g-12-2 | | 7*(3s+10)=280 | | 2x-2=2x-1 |